
Being "MultiFinder Aware"

Introduction

MultiFinder is Apple's newest System Software wrinkle for the Macintosh.
The major new functionality available under MultiFinder is the ability to run
multiple applications at once, all of them sharing the same screen or display
world. Multifinder thus provides the closest thing to multitasking available yet on
the Mac, except perhaps for things such as UNIX which are just getting off the
ground. Apple seems to have done a great job in introducing this new
functionality without greatly altering either the familiar Macintosh environment
for the user nor the programming model for the developer. Indeed, many
applications run correctly under MultiFinder, but many do not. Moreover as of
this writing, very few applications take full advantage of MultiFinder's background
support and are fully "MultiFinder Aware".

If an application's developer has been good and followed the rules laid down
at various times and in various fashions by Apple, chances are that the
application will run correctly under MultiFinder and that it may be modified
relatively easily to take full advantage of MultiFinder. The most common features
which an application developer may want to utilize include proper window display
when suspended, background processing, temporary memory allocation, and
new goodies such as the Notification Manager and Inter-Applications
Communications. These last two will be discussed briefly at the end of this
paper, being relatively new (in fact, not yet released at the time of this writing.)
Temporary memory allocation has not been utilized by this author, and so it will
be mentioned only in passing. However, the first two items mentioned, which
are in themselves "noble aspirations", are relatively easy to accomplish, and
should be considered minimum requirements for "MultiFinder Awareness". This
statement assumes an application is already MultiFinder friendly.

But sometimes a programmer will take an undocumented and/or unapproved
shortcut. Some examples of these include fussing with various low memory
variables, using CopyBits to save and restore a portion of the screen while a
dialog or alert is up, drawing directly to the screen rather than in windows or
other grafports, messing too much with the trap table, messing with memory
blocks without going through the proper Memory Manager calls, and assuming
the size and location of the application and system heaps. Now, if you've done
some of these so-called "bad things", you may still be OK. In fact, if your
application is already compatible with Switcher (which is no longer supported by
Apple), it is probably reasonably compatible with MultiFinder, since the
application environment differences between Switcher and MultiFinder are
minimal.

Some General Rules of the Game

First, let's discuss some of the do's and don'ts of being "MultiFinder friendly".
Then, I'll describe some of the new things (WaitNextEvent, temporary memory
allocation, and the new version of the SIZE -1 resource), after which I'll present
some of the techniques I used in Pro-Cite as an example of how one might
provide some of the functionality needed to be "MultiFinder Aware". The rules
fall into one of four categories: General or Global (pun intended) rules, Window
Manager rules, Event Manager rules, and Memory Manager rules. I will not
present an exhaustive list, but just hit the big ones. For a complete set of
guidelines, you may want to acquire the MultiFinder Development Package.

General/Global Rules
- Don't access low memory more than necessary. Things which are clearly

documented in Inside Macintosh or in Technical Notes are probably OK, but Apple
could decide to change them in the future, too!

- Don't change the Apple menu except through the proper ToolBox calls.
MultiFinder basically feels it owns the Apple menu and could get nasty if you
change it directly rather than using more "normal" methods.

- I've always felt that patching traps was an ignoble thing, but maybe that's
just due to my own limited experience! Anyway, if you're going to engage in this
activity, use the SetTrapAddress calls rather than writing into the dispatch table
in low memory and place your patch receiving routines in your application heap,
not in the System heap. You'll be glad you did. Also, remember to unplug all
your patched traps before exiting your application. Although I haven't seen
words to this effect in any Apple documentation, it may be a good idea to unplug
your patches on suspend events, too. I've had some bad experiences with not
doing this when I tried to patch TextEdit for tabs. Better to be safe than sorry.

- Don't access your global data from within an interrupt handler, a patch
receiving routine, an I/O completion routine, or a VBL task. It isn't even safe to
presume that the value in CURRENTA5 is correct! Instead, save a copy of your
A5 in some data structure you're sure you can find (such as a parameter block
that's passed in) when your routine is called. See Technical Note #180 for an
example of how best to do this.

- Use the Scrap Manager to access the scrap, rather than manipulating either
the low memory scrap data or the Clipboard file itself directly.

- Don't assume that at exit time (about when you're ready to call ExitToShell,
or otherwise fall off the end of your program) anything goes. Don't clear the
screen with a second call to InitWindows or something like PaintRgn(GrayRgn,
DeskPat). Don't blow away system data structures like the WindowList before
exiting.

Window Manager Rules
- Don't EVER modify Window Manager data structures (including the window

record and GrafPort fields, plus any low memory goodies) directly, rather use the
proper Window Manager ToolBox calls. You can do whatever you want to with off-
screen GrafPorts.

- Do all drawing to the screen within the bounds of a window with appropriate
ToolBox (QuickDraw) calls. Always draw only into GrafPorts (this of course
includes windows) that your application has created. Most game programs are
notorious for not doing this (Try Crystal Quest under MultiFinder…first click, and
you're switched out with only "some" of the Finder display surviving!)

- Don't bypass the proper techniques for updating windows obscurred by a
dialog or alert after it's dismissed. Some applications use CopyBits to do this, but
under MultiFinder they might just end up putting back "old" bits from the Finder
display or from another running application.

- Consider the Window Manager port to be off-limits, or at least read-only.
Don't draw on the desktop (at least, not in a destructive manner…zoom effect
lines and such seem to be OK, for now.)

Event Manager Rules (it certainly does!)
- The most important thing to do is treat all update events seriously. When

an application is running in the background (or at least switched out/suspended:
even those applications which do not support background processing will often
find themselves in this state), it will receive update events whenever the
foreground application has obscurred and then exposed one of its windows.
Applications should not implement deferred window updating schemes but
should respond (in other words, DRAW) directly upon receiving an update event.

- Null events should be treated more seriously as well. Null events will be
used by MultiFinder to provide time for background applications. Hence, time
consuming activities such as garbage collection should not be performed on
every null event received. Use the TickCount to arbitrate use of null events,
except for cursor tracking.

- Don't call SystemTask on every (null) event, but rather call GetNextEvent
(or preferably WaitNextEvent, see the Pro-Cite discussion later). Functions
previously supported by SystemTask are now handled properly by
GetNextEvent/WaitNextEvent.

- Support the suspend/resume events. They can eliminate most of the time
required for a switch, since MultiFinder also does the same desk accessory
charade that Switcher did, if the application doesn't indicate (via the SIZE -1
resource) that it supports suspend/resume events. Besides, supporting
suspend/resume events is the only sure way you can keep track of whether or
not your application is suspended (and you WILL want to do that!)

Memory Manager Rules
- Don't make assumptions regarding application or system heap size or

location. In fact, your application should be written such that it doesn't care
where the heap is or what size it is (except when it runs out of memory, of
course!) Use GetApplLimit to get at the size of your heap and use SetApplLimit
to resize your stack.

- Allocate additional heaps within your original heap as non-relocatable
blocks or else within your stack. Consider your application's available memory to
be the application heap and stack ONLY.

- Don't assume which heap a particular resource is loaded, unless it is a
resource you loaded from a file you opened directly. MultiFinder dynamically
loads resources from the System file and from printer resource files into a
number of different heaps that it maintains.

- Try to use MultiFinder's temporary block allocation calls for unusual needs
such as copy buffers, and thus keep the normal memory requirements of your
application smaller.

- Support the SIZE -1 resource to describe your application's memory
requirements and capabilities to MultiFinder. The minimum size should be
sufficient for the application to perform some useful work while the maximum
size should be no larger than than which the application uses when exercised
under normal circumstances. Let the user set the size larger if need be. A
preferred size of 2 Megabytes is probably excessive.

New Wrinkles from MultiFinder

MultiFinder introduces some new system functionality in the form of
temporary memory allocation and enhances existing functionality with the
WaitNextEvent ToolBox call. This section is also a good time to cover the new
version of the SIZE -1 resource.

WaitNextEvent
By far the most important change, and the focus of providing real MultiFinder

support in an application, is the WaitNextEvent trap. An application can perform
properly under MultiFinder by just continuing to use GetNextEvent, but true
background task support can only really be achieved with WaitNextEvent. The
prototype for this trap is

FUNCTION WaitNextEvent(VAR theEvent : EventRecord;
theMask : EventMask;
YieldTime : INTEGER;
MouseRgn : RgnHandle) : BOOLEAN; INLINE $A860;

The first two parameters (the event record and event mask) are identical to
those in the familiar GetNextEvent call. The YieldTime parameter (also called the
"sleep" parameter) indicates how much time to "give up" to any background
applications. It may be thought of as how many ticks for the Event Manager to
"go away and visit other applications" before returning a null event to allow this
application to do garbage collection type activities or possibly background
processing. A value of zero will cause the Event Manager to "return" immediately
after still providing some minimal time to any other processes currently active;
this is essentially equivalent to the GetNextEvent case. When the time specified
by YieldTime elapses, WaitNextEvent returns a null event and a return value of
FALSE. If a "real" event (e.g., update event if in the background or anything else
including an update event if foreground) occurs before the YieldTime value
elapses, WaitNextEvent returns the event immediately, along with a return value
of TRUE.

The last parameter, MouseRgn, is a handle to a region which describes the
area in which the cursor may maintain its current setting, as desired by the
application. If this parameter is not NIL, MultiFinder will generate a special type
of an event, called a "mouse-moved" event, whenever the cursor has been
moved outside of the given region. The application then may change the cursor
and generate a new MouseRgn to pass to WaitNextEvent. I found that some of
the regions I needed to describe were rather complex and thus I passed NIL for
the MouseRgn parameter. This meant that no mouse-moved would be
generated. While the purpose of the mouse-moved events is to improve
performance, I found that Pro-Cite's cursor-tracking routine was simple enough
that it could be executed on each event provided by MultiFinder (except when
Pro-Cite is suspended, of course) and still provide adequate performance to other
processes.

Temporary Memory Allocation
MultiFinder provides a temporary memory allocation service to help reduce

the memory requirements for an application's heap. It provides the ability to
allocate and release handles, lock and unlock handles to blocks within a special
MultiFinder heap zone. This service would be particularly useful for graphics or
animation buffers or for disk/file or resource copying buffers. In fact, the Finder
now uses these temporary memory calls for copy buffer space during file copy
operations. In Pro-Cite, I found little need for this service and so did not make
use of it. See the MultiFinder Development Package for full details on the
temporary memory allocation features of MultiFinder.

The New SIZE -1 Resource
To be truly MultiFinder aware, an application must include a SIZE -1 resource,

as introduced in the time of Switcher. The SIZE resource both indicates an
application's memory requirements as well as its degree of MultiFinder
compatiblity. The format of this resource (in MPW Rez terms) is:

resource 'SIZE' (-1, purgeable) {
saveScreen ("reserved"),
acceptSuspendResumeEvents/dontacceptSuspendResumeEvents,
enableOptionSwitch ("reserved"),
canBackground/cannotBackground,
multiFinderAware/notmultiFinderAware,
(11 bits "reserved")
Preferred Size,
Minimum Size

};
We'll just ignore the bits marked "reserved". Bit 11 indicates that the

application is aware of MultiFinder, if set. Most applications will have this bit on,
but some may function properly only when this bit is off. If this bit is set,
MultiFinder will not generate activate/deactivate events for the frontmost window
at resume/suspend event times, but will expect the application to do this itself,
which is the most efficient way. Bit 14 indicates support for suspend/resume
events if set (an application will NOT receive suspend/resume events unless this
bit is set), while Bit 12 indicates the capability of supporting background null
events for background processing (remember, ALL applications should be
capable of supporting update events at all times!) Most applications should
eventually provide support for suspend/resume events while only a few initially
will be capable of background processing under MultiFinder (Pro-Cite is one of
these, else why would I be writing this paper?)

The preferred memory size is no easier to determine under MultiFinder than
it was for Switcher. It is something best determined by "inspection" (a
euphemism for "trial and error.") The minimum size should be chosen such that
the application could provide the user with a minimal amount of useful work and
should never (well, almost never) give a "system error". The perferred size
should be chosen such that 90% of the application's functionality may be utilized
without memory problems. The application in any case should never be too
greedy with its memory requirement. Remember that the application may have
to exist in harmony with a number of other applications at the same time. An
application with a large preferred size such as 1024K will be looked down upon
by users and developers of other applications alike, unless it's a development
system (or perhaps it's just FullWrite.)

Pro-Cite has the three options all set to TRUE (multiFinderAware,
acceptSuspendResume, and canBackground), a preferred memory size of 384K
(which actually can be considered an operational minimum) and a minimum
memory size of 224K (which is really left over from PBS support for Switcher.)

Pro-Cite®--A (Mostly) MultiFinder Aware Application

Pro-Cite®, the new replacement for the Professional Bibliographic System for
the Macintosh, is a vertical market application and a bibliographic database
program which has aspirations of being a word-processor besides. When I was
well along in the design and implementation of Pro-Cite in the spring of 1987,
Apple made PBS a beta test site for a new version of the Macintosh System then
called "Juggler" (rumor had been rampant about it anyway). Fortunately, the
Professional Bibliographic System had been designed and implemented in a
Macintosh standard and Switcher-friendly way so that only a few problems had to
be ironed out to make it compatible with MultiFinder. As it turned out, most of
the PBS processing tasks had also been written in loops which regularly called
SystemTask to support desk accessories, so that MultiFinder background
processing support was not all that difficult to provide. For the remainder of this
paper, I shall try to describe some of the code and techniques which allow Pro-
Cite to be more or less fully MultiFinder aware, and I'll also describe support for
the new Notification Manager for System 6.0, which Apple gave PBS the
opportunity to test in early 1988. Refer to the attached MPW Pascal code listings
to augment the description below as necessary. In many places, I have left out
irrelevant statements to try to make the code clearer and easier to read, while in
other cases I've left certain items in so that application developers can identify
certain "common" areas of a Macintosh application.

The first task before the MultiFinder programmer is to determine if
MultiFinder is running in the first place, since the user can turn MultiFinder off,
and with the shortage of 1Meg SIMMs this year, will probably often want to. We
don't want to write a MultiFinder-only application just yet, do we? Using the
technique described in Technical Note 158, the Setup routine, which is called
when Pro-Cite first starts up, uses SysEnvirons to see if the 128K ROM is present,
since it is required for MultiFinder, and NGetTrapAddress to see if WaitNextEvent
is implemented, placing the result in the BOOLEAN variable "WNEisImplemented"
(well-named, I think.) It also sets the initial value of the sleep parameter
"YieldTime" to 3 as well as the foreground value for this, "frontYieldTime", and
the background value "backYieldTime" to 10. These were determined by trial
and error and will be used to change the value of "YieldTime" on suspend/resume
events. The user can also change these values through Pro-Cite's Configure
option (in an undocumented manner), but not all applications are expected to
provide such a feature, I would think. Pro-Cite also initializes the BOOLEAN
"suspended" to FALSE, of course. The remainder of the Setup code sample
initializes support for the Notification Manager, which I will describe at the end of
this section.

The main saving grace of Pro-Cite in providing MultiFinder support is the
centralization of all event-getting in a routine called "MyGetNextEvent". Actually,
many Macintosh applications probably centralize event retrieval and it certainly
makes the job easier. In "MyGetNextEvent", the setting of "WNEisImplemented"
is tested: if TRUE, we're running under MultiFinder so WaitNextEvent can safely
(and should) be called; if FALSE, then we're not running under MultiFinder so
SystemTask and possibly GetNextEvent is called. As mentioned earlier,
SystemTask may not be needed, but it was left in place in case a future version of
Pro-Cite which does NOT require System 4.1 is implemented. More importantly, a
BOOLEAN value "callGetNextEvent" is passed in so that background processing
may be supported as described below. The result of either WaitNextEvent or
GetNextEvent is placed in the BOOLEAN "haveEvent", some other processing is
done, and "MyGetNextEvent" returns.

Refer to the abbreviated sample of Pro-Cite's MainEventLoop to see how
MyGetNextEvent is used. The MainEventLoop is much as one would expect:
MyGetNextEvent is called to get an event near the top and the code proceeds
through a CASE statement to dispatch activity depending on the type of the
event. Notice a few interesting features of the MainEventLoop with regard to
MultiFinder. If Pro-Cite is suspended (the variable "suspended" is TRUE), then
neither the HiLiteMenu or the CursorAdjust routine is called, since these might
affect the display of the foreground application. However, CheckScrap (which
makes sure that the desk scrap and internal scraps are the same as far as Pro-
Cite is concerned) is called each time through the maineventloop. This really
doesn't take too long and thus scrap coercion becomes unnecessary on
suspend/resume events. Notice also that all suspend/resume events (which are
implemented as application-defined event type 4, or "app4Evt") are dispatched
to a routine called "DoSuspendResume", even in the case where IsDialogEvent
returns true: if you have modeless dialogs, be sure to handle suspend/resume
events yourself since the Dialog Manager probably won't do much with them.
"DoSuspendResume" is the heart of Pro-Cite's MultiFinder support.

"DoSuspendResume" is called, as one might expect, whenever Pro-Cite
receives a suspend event or a resume event. It first checks which window is
frontmost via FrontWindow, placing the windowkind of the frontmost window into
a global "docType" that is used literally everywhere. It then sets suspended
based on whether or not the message field of the event is odd: if it's odd, it's a
resume event so we're no longer suspended; if not, it's a suspend event so we're
about to be suspended. (The temporary setting of suspended to FALSE is merely
to allow SetHourGlass to turn on Pro-Cite's hourglass cursor.) If it's a suspend
event, then we fake up a deactivate event for the frontmost window, set our
YieldTime to the background value, call our activate routine ("MyActivate"), and if
one of "our" windows, we also cause an update event just to make sure things
are clean (and immediately process it by calling "DrawWindow".) If it's a resume
event we do much the same thing, except we fake up an activate event, we set
our YieldTime to its foreground value, and we also do a DrawMenuBar (mostly for
Switcher). Notice that when handling the activate/deactivate events, we need to
pass them to IsDialogEvent (and maybe DialogSelect) if the window is a

modeless dialog or to SystemEvent if the frontwindow is a desk accessory which
the user has opened in our application's heap instead of the DA layer.

Background processing in Pro-Cite is implemented by the "GetAnEvent"
procedure which is built on top off "MyGetNextEvent". It is merely a small
version of the MainEventLoop that only supports suspend/resume events as well
as activate and update events. From a process which Pro-Cite wants to support
in the background (such as sorting or formatting records), "GetAnEvent" is
merely called regularly with the "callGetNextEvent" FALSE (since if we're not
under MultiFinder we just want to call SystemTask) and with the event mask for
only app4Evt + keydownEvt, the latter to allow Command-period to interrupt the
process. The process will continue during null events, plus any windows
obscurred and then exposed by the foreground task will continue to be updated,
and finally a resume event will be processed when the user "clicks back" into Pro-
Cite. "MiniMainEvent" is a similar sort of thing, called by Pro-Cite to bring
windows to the front when necessary and to combat "display anomalies" in
certain places. It is also called by setup right after FlushEvents to make sure that
initial events from MultiFinder at startup are processed immediately: if this isn't
done, one could find any dialog or "splash screen" initially produced by the
application coming up BEHIND the layer (usually Finder) from which the
application launched!

Finally, a few words about the Notification Manager which is available in the
6.0 release of the Macintosh System, released in the spring of 1988. The
Notification Manager is NOT really an implementation of inter-process or inter-
application communication: that will probably come in some form in System 7.0.
It is, however, a means by which an application running in the background can
let the user interacting with the current foreground application know that the
background application requires attention by a sound, a flashing small icon
alternating with the Apple menu icon, a diamond mark on the application's name
in the Apple menu, or an alert, or any combination of these. Pro-Cite provides for
either sound or the flashing small icon, and it also provides a means for the user
to enable or disable these (an idea to keep in mind, if you're going to provide
Notification Manager support.) Notification Manager support is actually trivial to
provide, if you've accomplished MultiFinder support.

Referring as needed to the attached listing, notice that a record type
"NMRec" has been declared for Notification Manager support, and the
accompanying variable is "nmforProCite". It is just a standard Macintosh
Operating System queue element. This record is initialized in the Setup
procedure. The qType is just set to ORD(nmType) which is 8 (in fact, Pro-Cite
uses this variable to indicate if a Pro-Cite Notification Manager task is currently
active.) The nmMark value is set to 1 to provide a diamond mark in the Apple
menu: Pro-Cite always does this and it isn't user-configurable. The nmStr pointer
is set to NIL: it provides for a string to be displayed in an alert and Pro-Cite
doesn't support this feature. The notification response procedure pointer,
nmResp, is set to @NMResponse. This procedure does absolutely nothing in Pro-
Cite, but must be present or the flashing icon and menu bar mark will go away
immediately after the notification sound occurs! Developers probably will find
more for it to do in future applications.

Pro-Cite sets up a Notification Manager task by calling its routine "MyNotify"
whenever it has completed a process in the background, such as formatting or
sorting records, or when it has encountered an error condition while processing in
the background and wants to bring up an error message alert. Pro-Cite could just
use the Notification Manager to bring up the alert immediately in the foreground
layer, but I think the way I've done it is much less obtrusive. Pro-Cite merely sets
up the task with "MyNotify" (checking the variable "notifylevel" to see if the user
wanted sound and/or icon, loading the small icon if necessary and setting the
nmSIcon handle to it), calls NMInstall to install the queue element, and then
hangs around in the MainEventLoop or with MiniMainEvent, whichever is
convenient, until the user switches back in. When the user does come back in,
Pro-Cite kills the Notification Manager task when processing the resume event by
just calling NMRemove in "DoSuspendResume." And that's all there is to it!

A Brief Good-Bye, and Good Luck!

In this paper I've tried to present what I feel are important points to
remember when trying to provide MultiFinder support within an application, as
disclosed to me by Apple during testing of various versions of MultiFinder and as
discovered by me when trying to accomplish the darn task in the first place. This
is by no means an exhaustive list, nor may the techniques described herein be
entirely accurate or sufficient for the needs of any given application (there are so
many Macintosh applications!) I would refer you to both present and future
versions of Inside Macintosh, the MultiFinder Development Package, plus the
ongoing series of Technical Notes, for more information.

I hope that I have given you an idea of what it's like to provide MultiFinder
support in an application and that I have convinced you to go ahead and DO IT. I
think it's a good idea that all applications strive to support MultiFinder as much
as possible so as to provide as rich an environment as we can for the Macintosh
user. At least until the next Macintosh System release (next year.) Good luck.

